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EXPERIMENTAL AND ANALYTICAL STUDY ON FLUID WHIRL AND FLUID WHIP MODES
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ABSTRACT

Fluid whirl and fluid whip are rotor self—excited, lateral vibrations which occur due to rotor
interactions with the surrounding fluid. There exist various modes of fluid whirl and fluid whip.

These modes are close to rotor modes corresponding to free vibrations (based on the linear
model). Small differences are due to nonlinearities in the system.

L. INTRODUCTION

Dynamic phenomena induced by interaction between the rotor and the surrounding fluid, such as
occur in fluid—lubricated bearings and seals of fluid—handling machines, have been recognized for
over 60 years. The resulting rotor lateral self—excited vibrations, usually occurring at
subsynchronous frequencies, are known as “fluid (oil,..) whirl, “fluid (aerodynamic, steam,..)
whip," or simply "rotor instability." The rotor precessional direction of these self—excited
vibrations is always forward. Most of the existing literature have documented occurrences of
these phenomena in low ranges of rotative speeds [1—6]. Classical literature on fluid—lubricated
bearings, which concentrates on lubrication problems rather than rotor instabilities, reports only

occurrences of whirl vibrations of rigid rotors. References on rotor instability due to dynamic
phenomena occurring in seals report whip type

When the rotating shaft and surrounding fluid involved in motion are consider
one system, it is evident that vibration modes interact.
vibrations of the rotor occur at relatively low rotative speed, the shaft would vibrate as either
rigid bedy (whirl), or at its first lateral mode [7). With an increase in rotative speed, there is a
smooth transition from the whirl to whip of the first mode. It is obvious that both these
phenomena are generated by the same source, and thus can be modeled by one algorithm. At
higher rotative speed, higher mode whirl or whip vibrations may be induced [8,9). The modal

approach in rotor system modeling allows for clear interpretation of the occurring vibrational
phenomena.

ed, however, as
If the fluid—induced, self—excited

This paper is a continuation of the series of papers [7—-11] on applications of the improved model
of the fluid force for lightly radially loaded shafts rotating in a fluid environment. Following
Bolotin [12] and Black [13,14], the fluid force model is based on the strength of the
circumferential flow generated mainly by the shaft rotation [15]. This model can be used for
lightly radially loaded bearings, as well as seals (with or without preswirls and/or injections).
The fluid force model, identified experimentally by using physical perturbation techniques [16,17]
and the modal approach in modeling, allow for more adequate prediction of rotor stability
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thresholds, and evaluation of the post—stability fluid—induced rotor lateral limit cycle
self—excited vibration parameters (whirl and whip).

Using the multi—mode modal approach [8, 17], the linearized rotor system eigenvalue problem is
solved, and approximate values of natural frequencies and thresholds of stability are given. It is
shown that there exist fluid—generated natural frequencies of the system, and the corresponding
sequence of modes. The nonlinear model allows for calculation of the after—threshold, self—
excited vibration parameters, including modes of vibration.

2. MATHEMATICAL MODEL OF A TWO-MODE ROTOR WITH ONE SOURCE OF
INSTABILITY

Two physical models of rotors on which mathematical models are the same will be discussed in
this section. In both cases the rotors carry one source of fluid—induced instability.

Consider a balanced isotropic rotor of a fluid—handling machine supported by two rigid bearings.
The rotor rotates concentrically in a seal located at the axial section "S" (Fig. 1a). Consider a
balanced isotropic rotor rotating concentrically in one fluid—lubricated and one rigid bearing

(Fig. 1b). When using the multi—mode modal approach (mode summation), the mathematical
model of the rotor, in both cases, is as follows:

Mis;+ D3y + (K1 +Ko)s  —Kgsp =0

Masg + Daig + (Ko+Ks)za — Koz — Kazg =0
(1)
D(3 3—jAQss) + (Kp+K3+K()ss + s39(l23l) —Kaza =0

5i(t) = xi(t) + jyi(t), i=1,2,3, szl =yx§ + vi, j=y-1, - =d/d

where xi, y; are rotor horizontal and vertical displacements, Mi, Mg, Ky, K9, K3, K4, Dy, D3 are
two—mode rotor modal masses, stiffnesses, and external damping coefficients, respectively (in case
of the fluid—lubricated bearing, the stiffness K4 cither equals zero or represents an external
supporting spring (Fig. 1b)). D, Kp, A are seal or bearing fluid radial damping, radial stiffness
and circumferential average velocity ratio, respectively, % is fluid nonlinear stiffness function of
radial displacement, {1 is rotative speed, t is time.

For clarity of presentation, the unbalance forces, radial side—load forces, external cross damping,
fluid inertia effect, and other nonlinear functions are omitted in the model.
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Fig. | Physical models of rotors: (a) rotor/seal system, (b) rotor/bearing system.

278



2.1 Eigenvalue Problem: Natural Frequencies, Thresholds of Stability

The eigenvalue problem for the linearized Eqgs. (1) (that is, when %=0) provides the following
characteristic equation:

(RiR—KED(w-AQ) + Kp + Ky + K¢ —K{k =0 (2)
where

Ri=Ki+Kj,| + jwDj — Mjw?, =12 ' (3)
are rotor partial complex dynamic stiffnesses and W is the complex eigenvalue. Eq. (2) can

certainly be solved numerically for specific parameter values. It is the author’s intention,
however, to show specific qualitative features of this equation solution.

The split of Eq. (2) into real and imaginary parts provides the following equations:

Dw(w—Aﬂ)(sz+x2D1) - (N;K:—K%—szlDz)(KB+Ks+K4) + Kik; =0 (4)
D(U—AQ)(Kﬂcz—K;—szxDz) + U)(K1D2+KQD1)(KB+K3+K4) —KfuwD; =0 (5)

where Ky, Ko are direct dynamic stiffnesses, that is the real parts of the complex dynamic
stiffnesses (3). The approximate values of the system natural frequencies (real parts of w) can
be calculated from Eq. (5). With damping Dj assumed of the second order of smallness the

gero—th approximation establishes w8 A0, W,...5 ¥ twny, i=1,2. The first approximation
provides more accurate relationships:

FLUID WHIRL FREQUENCY = wi s AN [1 -

—p, 1K2+K3-M» A3034(K +K 3 —M; A 202) Dy/D, ] (K +K3+K4—K§] (6)
' DT(K; +K 2 M AR (K, +K s IAKIT) —KY 2 DD

FLUID WHIP FREQUENCIES = Wy3 N Wpi —

— (~1)ip, KatKyMawdi+(K | +K 9 ~M | w3 )Do/D | | (Kp +Ks+K ) —K1

2D(wn s —ATT) M Ma(wl,—w3 )

, =12 (7)

REVERSE MODE FREQUENCIES = w5 & ~wgyng 8)

where wWn 1, Wh2 are solutions of the rotor partial characteristic equation KiKg — K; =0:

12
= |Ki+Ky | Kr+Kj _ i‘/ Ki+K; _ Kp+K;j)? K3 .
Wni { aM; M, () M, M4 MMz [ o =h2(9)

The approximation (7) cannot be applied for the value Q=wni/), thus this case should be
calculated using Eq. (6).

The fluid whirl frequency w; is almost a linear function of the rotative speed. The fluid whip
frequencies wo,3 are independent from the rotative speed. At the crossing of Wy with W, and w;
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in the plane (£, wj), i=1,2,3, the straight lincs degenerate into hyperbolas (Fig. 2), resulting in a
smooth transitions from the whirl—to—whip and whip—to—whirl modes.

wh
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Fig. 2 Natural frequencies versus rotative speed.

Eq. (4) provides the approximate values for stability thresholds. For the whirl onset, W in Eq.
(4) is substituted by AQST (the zero—th approximation (6) with Dy=D3=0). The resulting

quadratic equation for QgT establishes:

_1]Ki+Ky K3 Ky(Kp+Kq)
QST‘-X{ 2M; T 2Mz t I3 (Ks+Kp+Ka) T

1/2
+(_1)ij Ki+K; _ K _ _Ky(Kp+Ky) )7, _Ki / i=1,2 (10)
2M 2M;, 2M 3 (Ks+Kp+Ky) M M2 ! !

There exist, therefore, two instability onsets leading to the fluid whirl instability. For the whip
cessations, W in Eq. (4) is substituted by wpi, i=1,2 (the zero—th approximation (7) with Dy =
Dy = 0), and § is substituted by {dgp ;.

S K{ ' 19
fOsria=3 {wm T DunilDrD (K 2+K3—M2wni°)’m] y =l ()

Note that all stability thresholds are inversely proportional to the fluid circumferential velocity
ratio A . The onscts (10) do not depend on damping, while the cessations (11) do: larger
damping, lowers the cessation rotative speed, thus narrowing the range where the instability
occurs. Practically, the cessations seldom occur at rotative speeds (11), because the rotor is
already in the self—excited vibration condition, and the system parameters differ from the linear
ones. (The first order approximation (11) does not show dependence on Kpg, thus no
dependence on ¥ ; it is necessary to consider higher approximations).

In the rotor/seal system case, the fluid radial stiffness Kp is usually smaller than the stiffness Ky,
thus the third term in Eq. (10), and the third term under the radical in Eq. (10), are
approximately the stiffnesses of the rotor right portion, combined by two elements in sequence:
K3K¢/(K3+Kq¢) (Fig. 1a). The expressions in large parentheses of Eq. (10) represent, therefore,
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the natural frequencies of the entire shaft. The stability onset expressed as the 1/ fraction of
the natural frequency (which for the most often used value A=0.5 cquals 2) is well known in
rotor/seal dynamics. At the rotative speed as high as double the first natural frequency, only
whip type of instability may occur. That is why very often only whip, and no whirl vibrations,
arc associated to rotor/seal dynamics. As Eq. (10) indicates, however, the multiplier 1/ is not
necessarily equal to 2 (which it very seldom is), but depends on the actual circumferential flow
conditions in the seal. Swirl brakes or anti—swirl injections can significantly modify A [11).
Additionally, the fluid radial stiffness may modify the instability onset (10): the larger Kp, the
higher the instability onset. (A larger fluid radial stiffness results, for instance, from a higher
external pressure of the fluid.) The onset (10) also depends on the location of the seal along the
rotor, thus on the values of stiffnesses K3 and K¢.* The highest values of the onsets (10) occur
where the stiffness K3 is equal to Kp + Ky, that is, when the seal is located approximately in the
middle between the second modal mass and the right—side bearing.

The function f; = Kk — K3, which provides the whip frequencies wyj, Eq. (9), and the

functions f3 = (Kik9— Kg)/&l, f3 = Kg/(KB+K3+K4), which provide onsets of instability, Eq.
(10), can be investigated graphically in the plane (w2, f), v=1,2,3. The result is presented in
Figure 3. The instability onsets can be found on intersections of the hyperbola f2 and the
straight line f3 . Now it is easy to discuss the effect of the stiffnesses K3, K4, Kp on the
instability onsets. If the stiffness K4 is low (rotor/bearing model), then the line f3 is higher, and
the resulting stability onsets occur at lower rotative speeds, thus, very often in the whirl
instability range. An increase of the stiffness K3 (mass Mj closer to the instability source)
results, again, in a decrease of the instability onset. An increase of the fluid radial stiffness Kp
provides a stability improvement by moving the instability onsets toward higher rotative speeds.
In all cases, however, the onsets occur at the speeds QSTi which are lower than wyi/A, i=1,2.

K!KQ

K
Ky+K¢+Kp

Fig. 3 Graphical solution of Eqs. (4) and (5) showing whip frequencies (9) and onsets of
instability (10).

*In this study the seal location is chosen outside the modal masses; a similar analysis can be

performed for a case where the seal is located between the modal masses, that is being closer to
the second mode nodal point.
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2.2 Rotor Modes

The complex modal functions that are calculated from the linear part of Egs. (1) are as follows:

dp=1, &, =1+ KotDywMu? 4 Ky(Ki+Ky4Dyj M, ) (12)
w ! w Kgq 'OV T Kg[Dj (w-Af)+Kp+K 3 +K

Using the natural frequencies (6) and (7), the approximate modal functions at stability
thresholds are obtained. The modal functions of the first and second mode whirls are as follows:

=1 Gumé—(=)i fer + MU gy Ko
bi=1 Gu{-CDN [+ gl dunbugghg,, =12 (13)

where

=K1 M _ KM (KpiKy)
2 K2 M2 KoMz (Kp+K3+Ky)

The modal functions of the first and second mode whips are as follows:

- - 2
o . Ky = Mywni
i =1, daia¥ 1 4 K, al o,
- 'D(wni"')\ns'rim)
63&2 ~ ¢2102K3 e—J Kp+K 3 +K4
V(Kp+Ks+K4)? + D¥{wni~Allgr{,,)?

, i=12  (14)

where Wi are given by Eq. (7) and Qg1+ by Eq. (11).

During the whirl of the first mode, the entire shaft vibrates in phase. During the second mode
whirl, the modal masses My, M are 180° out of phase (when damping is neglected). During the
first and second mode whips, two rotor masses vibrate in phase, and 180° out of phase,
respectively, but the seal location leads the vibration of the second mass by an angle which
depends on the system parameters (Eq. (14)).

2.3 Self—Excited Vibrations

After the onscts of instability, the rotor self-excited vibrations occur. Eqs. (1) have exact
periodic solutions of the circular form:

(wt+ay) ,

5= Aje ”J(M-{-az) '

5= A 53 = A;ejwt (15)
with frequency (or frequencies) w , and corresponding amplitudes Aj , and phases @j , i=1,2
relative to the phase of the fluid instability source location. Egs. (15) describe rotor self—excited

vibrations, known as whirl and whip. They occur as steady—state limit cycles after the onsets of
instability and some transient process.

The frequencies, amplitudes, and phases of Eqgs. (15) can be calculated from the set of nonlinear

algebraic equations obtained by substituting (15) into Eqs. (1), and dividing all terms by ert.



Note that the argument of the only nonlinear function % becomes now Aj3. The final algebraic
equations are as follows:

| K§wD —D(w=A) ( & { K3—K3—w2DDy)

- t i 12 22 __ — —

A=y [ w( K D3+K3D () Kp —Ka— Kq (16)

A= KKy, A% - K As (17)
K1k — K KiKg — K3

where Ki, Ki, i=1,2 are dynamic stiffnesses (3) and their real parts, respectively, and 11 denotes
the inverse function . The frequency w in Eq. (16) should be substituted by the frequencies
obtained from the equation which differs from the characteristic equation (2) only by one
nonlinear term. The approximate values for the self—excited vibration frequencies are, therefore,
very close to the fluid whirl and whip frequencies. In Eqs. (6) and (7) the fluid radial stiffness
Kp should read [Kp+%{A)]. Since the second terms in Eqs. (6) and (7) are proportional to
rotor damping, and thus are relatively small, the above—discussed nonlinear function adjustment

will, therefore, bring very little change to the approximate frequencies (8), (7). The reverse mode
frequencies (8) do not satisfy Eq. (16).

For the whip frequencies W = Wpy or W = W2, the denominators of Eqs. (17) are controlled only
by damping, thus, independently of the amplitude Aj , the rotor with masses M, Mj is in
resonant” conditions corresponding to its two lateral modes. :

It is easy to show that for the first mode whirl and whip frequencies, the phase angles «; and
Q7 are negative, thus the mass locations are lagging the instability source at the bearing or seal.
For the second mode, the phase lag also occurs additionally to the relative 180° phase change of
the modal mass locations. The instability source phase leading of the whirl or whip vibrations is
well recognised in the ficld, and has become the basis of the identification method for the
instability source axial location on machinery trains [18].

3 MULTI-MODE ROTOR WITH ONE SOURCE OF INSTABILITY

An analysis similar to that presented in the previous chapter can be performed for the
multi—mode rotor (Fig. 4). The rotor characteristic equation now has the following form:

[Di(w-AR) + Kp + Kn-t + Knlk — Kioq = 0 : a8
where
K3,
Kn-2 = 3 1
- Kias
Kn": - Kz
Kn4 — 2
Rn-s —
K =
| K
Ky — 1
_ K3
Ky - .;
_ K
Ky — —
L F
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and

Ki=Kij+ Ki,1 + jwDg — Mjw?, i=1,...,n—2

are rotor partial complex dynamic stiffnesses. The stiffness K represents the dynamic stiffness of

the rotor, except its last section at the right side (Fig. 4). The real part of K, when equalized to

sero, will provide the gero—th approximation to whip frequencies w & Wni, i=1,...,n—2.

K, M, K, M Ky [Ms Ma-2 Koy __ Kj
a L . 2o,
Z Z2 Z3 Zn-2

Fig. 4 Multi—-mode rotor/bearing/seal model.

The sero—th approximation to the whirl frequency is still w » A, The further terms in
approximations to whirl and whip frequencies, which can be calculated from the imaginary part

of Eq. (18), are Proportional to the external damping, and except for the regions when {) —
Wnif A, they are small. :

Similarly to Eq. (4), the real part of Eq. (18) provides the stability thresholds,

The corresponding graphical analysis that is discussed in Section 2.1 can also be performed for
Eq. (18). The result indicates virtually the same features: the instability onsets occur at rotative

speeds lower than 1/A fraction of natural frequencies, and can be controlled by the similar
parameters, namely, A, Kn-j, Kp, and Kp.

4, EXPERIMENTAL RESULTS

4.1 Experimental Rig

The experimental rotor, which was made of steel, consisted of a 0.375" diameter shaft with two
disks of the mass 4.637 x 10-3 Ib.s3/in (inboard) and 4.643 x 10-3 Ib.s%/in (outboard). The rotor
Was supported inboard by a relatively rigid sliding bearing bushing, and outboard by a 360°
oilubricated, cylindrical bearing with 1.5" diameter and 6—mil radial clearance. The lubricant
was T10 oil with 5 psi inlet pressure. The rotor was driven by 0.5 hp electric motor through a
flexible coupling. Four orthogonal 8prings supported the outboard end of the shaft, in order to

maintain concentric position of the journal inside the bearing at rest. The rotor cartied some
amount of unbalance,

The sets of XY proximity transducers were located at the fluid—lubricated bearing and at four
other axial locations of the shaft (Figs. 5 and 6). The vibrational data from these transducers, as

well as from the Keyphasor® (once per rotation pulse) transducer, were collected by the
computerised data acquisition and Processing system.

4.2 Experimental Results
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frequencies. The artificial Keyphasor marker positions were used to plot rotor centerline
deflections for particular modes (Figs. 5 and 6). Figures 7 to 10 present the spectrum cascade
plots during the rotor start—up. They exhibit synchronous (1x) unbalance—related vibrations
and high rotor subsynchronous vibrations of the first and second mode whirl and of the whip
type. Moving the disks toward the rotor midspan (case 2) resulted in a lowering the first natural
frequency, and increasing the second one as compared with case 1. The first onset of instability
occurred higher in case 2, but the second one occurred at a lower rotative speed. In both
considered cases, rotor first mode whip vibration amplitudes were much higher than in the whirl
modes. In both cases, the whip cessations occurred simultaneously with the second mode whirl
onsets, but this is not a rule for other systems [9].

e 4.25" ol a— 4.00" —efw— 4.00" —al= 4.50"-
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Fig. 6 Rotor sketch and rotor modal centerlines at the first and second mode whirl and at whip
at specific rotative speeds. The orbits are filtered to whirl or whip frequencies wj, i=1,2.
Orbit scale: 5 mil/div. Case 2: disks close to mid-span.
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The modal parameter ratios as functions of the square root of mass ratio calculated from Eqs.
(20) are presented in Figure 11. Since the modal parameter ratios must be positive, there exist
limited ranges of mass ratios which satisfy this condition. It can be scen in Figure 11 that for
case 1: 1.92 < i < 10.8, and for case 2: 1.98 < 4 < 19.9.

Perturbation testing should provide more reliable identification data [17}.
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NOTATION

Amplitudes and phases of rotor self-
excited vibrations, respectively
Fluid radial damping and radial
stiffness, respectively

Rotor complex lateral displacements
and their absolute values

Rotor modal damping coefficients
and modal masses, respectively
Rotor modal stiffnesses

Integers

Time
Rotor horizontal and vertical
displacements, respectively

KiKi

A

p=M /M2
b

]

W

wi

Wni
0

Qgry
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Rotor complex dynamic stiffnesses
and their real parts, respectively
Fluid circumferential average
velocity ratio

Modal mass ratio

Rotor complex modal functions

Fluid nonlinear stiffness function
Complex eigenvalue; also
self-excited vibration frequency
Approximate natural frequencies of
the rotor system

Rotor natural frequencies
Rotative speed
Thresholds of stability
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During whip conditions the whip frequency filtered orbits are elliptical, reflecting rotor system
anisotropic features. During whirl conditions the orbits are circular (except the first-mode whirl
in case 2), and much smaller than at whips (Figs. 5, 6). There exist higher harmonic and
combinational components in the spectra (Figs. 7 to 10), especially when amplitudes of whip
vibrations are high (Figs. 7, 8) causing involvement of geometric nonlinearities.

The first instability onset in case 2 (Figs. 9, 10) occurs at relatively high rotative speed, in the
range of the transition to whip rather than at whirl, as in case 1 (Figs. 7, 8). The phases and
amplitudes of these self-excited vibrations change considerably just after the onset: first the

horisontal amplitudes are large, then, at higher rotative speed, in whip conditions, the vertical
amplitudes become dominant (Fig. 9).

4.3 Identification of Rotor Modal Parameters From Experimental Results

In this section a method of partial (incomplete) identification of the rotor two-mode modal
parameters will be outlined. This method does not pretend to be general; the identification

results show only that the modal modelling is feasible, simple, and reflects major dynamic
features of the rotor behavior.

The data for identification is taken from the start-up runs (Figs. 7 to 10): rotor natural
frequencies of the first two modes, Wny, Wn2, and the onsets of instability for the first and second
mode whirls, QST p Qgpqy From Eqgs. (9) and (10), the rotor parameters are calculated as

follows:

K K K
——§=[b(w?,1+wn§-b)-wﬁlw?\2]\/ﬁ, -ﬁi=bu-—§
(20)
Ky_ . 2 2y K2 Kp+Kq _ K K3/M2 _
M, = Yot R My M2 ~ M2 | 2 2 3y3q2 2 !
‘*’nl‘*"'»’n?"A (nST l+nST 2)
where :

b= wiwis =2 04,04y ,
w!2ll + wleﬁ -Az(ng'rt + Q%TQ)

- M
b=

Since there are only four equations, (9) and (10), and seven unknown parameters, the
stiffness—to-mass ratios are expressed as functions of the modal mass ratio (4 .

The data for the cases 1 and 2 are given in Table 1.

TABLE 1. Experimental Data

wny | wnz |fgry Qs | A

rpm —_
Case 1 1677 |5200 {2000 |8800 |0.48

Case 2 |1400 |6300 |2500 |8000 [0.48
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